Shock initiation of detonation in a mixture of gelled nitromethane with microballoons

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Using a multichannel laser interferometer, a series of experiments with recording of particle velocity profiles have been carried out to determine the dynamics of shock initiation of detonation in the mixtures of nitromethane with microballoons, which are heterogeneous explosives with a controlled charge structure. It is shown that the addition of 5–8 wt.% microballoons to nitromethane reduces the shock wave amplitude required to initiate detonation by almost an order of magnitude. At 8 wt.% of microballoons, depending on the initiation conditions, the realization of both steady Chapman-Jouguet detonation and weak detonation is observed.

Texto integral

Acesso é fechado

Sobre autores

M. Shakula

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: utkin@icp.ac.ru
Rússia, Chernogolovka, Moscow region; Dolgoprudnyy, Moscow region

A. Utkin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: utkin@icp.ac.ru
Rússia, Chernogolovka, Moscow region

V. Mochalova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: utkin@icp.ac.ru
Rússia, Chernogolovka, Moscow region

V. Lavrov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: utkin@icp.ac.ru
Rússia, Chernogolovka, Moscow region

A. Savchenko

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: utkin@icp.ac.ru
Rússia, Chernogolovka, Moscow region

V. Vilkov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Lomonosov Moscow State University

Email: utkin@icp.ac.ru
Rússia, Chernogolovka, Moscow region; Moscow

Bibliografia

  1. Lee J.J., Frost D.L., Lee J.H.S., Dremin A. // Shock Waves. 1995. V. 5. № 1–2. P. 115.
  2. Presles H.N., Vidal P., Gois J.C., Khasainov B.A., Ermolaev B. S. // Shock Waves. 1995. V. 4. № 6. P. 325.
  3. Satonkina N.P., Ershov A.P., Kashkarov A.O., Rubtsov I.A. // RSC adv. 2020. V. 10. № 30. P. 17620.
  4. Yunoshev A.S., Plastinin A.V., Rafeichik S.I. // Combust. Explos. Shock Waves. 2017. V. 53. P. 738.
  5. Yang M., Ma H., Shen Z. // J. Energ. Mater. 2019. V. 37. № 4. P. 459.
  6. Busby T., Smith J., Sheehan P., Oxley J. // Propellants, Explos., Pyrotech. 2023. V. 48. №8. P. e202200324.
  7. Lavrov V.V., Zubareva A.N., Komissarov P.V. // Russ. J. Phys. Chem. B. 2019. V. 13. № 4. P. 603.
  8. Dattelbaum D.M., Sheffield S.A., Stahl D.B. et al. // Proc. 14th Intern. Detonation Sympos. Arlington, VA, USA: Office of Naval Research, 2010. P. 611.
  9. Engelke R. // Phys. Fluids. 1979. V. 22. № 9. P. 1623.
  10. Khasainov B.A., Ermolaev B.S., Presles H.N. // Tenth Intern. Sympos. on Detonation. Arlington, VA, USA: Office of Naval Research, 1993. P. 33395.
  11. Sabourin J.L., Yetter R.A., Asay B.W. et al. // Propellants, Explos., Pyrotech. 2009. V. 34. № 5. P. 385.
  12. Gois J.C., Campos J., Mendes R. // Proc. Conf. Amer. Phys. Soc. on Shock Compression of Condensed Matter. V. 2. Seattle, Washington: AIP Press, 1996. P. 827.
  13. Mochalova V., Utkin A., Shakula M., Lavrov V. // Phys. Fluids. 2023. V. 35. № 1. P. 017117.
  14. Higgins A., Loiseau J., Mi X.C. // AIP Conf. Proc. 2018. V. 1979. № 1. P. 100019.
  15. Kondrikov B.N., Kozak G.D., Oblomskii V.B., Savkin A.V. // Combust., Explos., Shock Waves. 1987. V. 23. № 2.
  16. Mochalova V., Utkin A., Shakula M. et al. // Phys. Fluids. 2024. V. 36. № 2. P. 026112.
  17. Mochalova V., Utkin A., Shakula M. et al. // Phys. Fluids. 2021. V. 33. № 4. P. 046108.
  18. Dremin A.N., Savrov S.D., Trofimov V.S., Shvedov K.K. Detonation Waves in Condensed Media. Moscow: Nauka, 1970.
  19. Chaiken R.F. // J. Chem. Phys. 1960. V. 33. № 3. P. 760.
  20. Sheffield S.F., Weese R.K., Wardell J.F. et al. // Proc. 13th Intern. Deton. Sympos. Arlington, VA, USA: Office of Naval Research, 2006. P. 401.
  21. Bouyer V., Darbord I., Hervé P. et al. // Combust. Flame. 2006. V. 144. № 1–2. P. 139.
  22. Kanel G.I., Razorenov S.V., Utkin A.V., Fortov V.E. Shock-Wave Phenomena in Condensed Media. Moscow: “Yanus-K”,1996.
  23. Mader C.L. Numerical modeling of detonations. Los Alamos Series in Basic and Applied Sciences, 1979.
  24. Utkin A., Mochalova V., Zubareva A. et al. // Propellants, Explos., Pyrotech. 2022. V. 47. № 9. e202200051.
  25. Utkin A.V., Mochalova V.M., Rogacheva A.I., Yakushev V.V. // Combust., Explos., Shock Waves. 2017. V. 53. № 2. P. 199.
  26. Wang Z., Xue K., Mi X. // Phys. Fluids. 2024. V. 36. № 2. P. 023336.
  27. Ermolaev B.S., Sulimov A.A. Convective Combustion and Low-Speed Detonation of Porous Energy Materials. Torus Press Moscow. 2017.
  28. Ermolaev B.S. Belyaev A.A., Roman’kov A.V. et al. // Russ. J. Phys. Chem. B. 2019. V. 13. P. 646.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic diagram of the experiments on shock-wave initiation of detonation.

Baixar (255KB)
3. Fig. 2. Schematic diagram of shock-wave initiation of detonation of liquid explosives.

Baixar (209KB)
4. Fig. 3. Velocity profiles at the boundary with water for nitromethane.

Baixar (406KB)
5. Fig. 4. Velocity profiles at the boundary with water for a mixture of nitromethane with 5 wt.% microspheres.

Baixar (649KB)
6. Fig. 5. Evolution of the wave profile in t–x coordinates for a mixture of nitromethane with 5 wt.% microspheres.

Baixar (245KB)
7. Fig. 6. Velocity profiles at the boundary with water for a mixture of nitromethane with 8 wt.% microspheres.

Baixar (602KB)
8. Fig. 7. Evolution of the wave profile in t–x coordinates for a mixture of nitromethane with 8 wt.% microspheres.

Baixar (259KB)
9. Fig. 8. Mass velocity profiles at the water interface for a mixture of nitromethane with 8 wt% microspheres at high initiation pressure.

Baixar (535KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025