Mathematical modeling of wood-coal pellet ignition in combined heating

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The article presents the results of mathematical modeling of the ignition process of fuel pellets based on coal and biomass under high-temperature combined radiation-convective-microwave heating in an oxidizing environment. A new mathematical model of the ignition process of a composite fuel particle is presented, which differs from the known ones by a complete description of the entire complex of thermophysical, physicochemical and electrophysical processes occurring during ignition of wood-coal pellets under conditions of radiation-convective and microwave heating. The mathematical model was tested by comparative analysis of theoretical and experimental values of ignition delay times. According to the results of numerical modeling, it was found that the ignition process of fuel (composite fuels based on coal and biomass) pellets occurs in the gas phase (in the near-wall zone of the fuel pellet). At the same time, oxygen released during thermal decomposition of coal is not enough for stable ignition in the pore space of the fuel particle. For the first time, the prospects of using microwave energy for the purpose of illuminating the main fuel torch have been substantiated based on the results of theoretical studies.

Texto integral

Acesso é fechado

Sobre autores

G. Kuznetsov

National Research Tomsk Polytechnic University

Email: syrodoy@tpu.ru
Rússia, Tomsk

S. Syrodoy

National Research Tomsk Polytechnic University

Autor responsável pela correspondência
Email: syrodoy@tpu.ru
Rússia, Tomsk

M. Purin

National Research Tomsk Polytechnic University

Email: syrodoy@tpu.ru
Rússia, Tomsk

Zh. Kostoreva

National Research Tomsk Polytechnic University

Email: syrodoy@tpu.ru
Rússia, Tomsk

Bibliografia

  1. Quintero-Coronel D.A., Lenis-Rodas Y.A., Corredor L.A., Perreault P., Gonzalez-Quiroga A. // Energy. 2021. V. 220. Article 119702.
  2. Wu H., Zeng Xi., Hao S., Liu B., Zhang Y. et al. // Fuel. 2024. V. 363. Article 131051.
  3. Syrodoy S.V. Malyshev D. Yu., Nigay N.A., Purin M.V. // Process Saf. Environ. Prot. 2024. V. 184. P. 736.
  4. Syrodoy S.V., Kuznetsov G.V., Gutareva N. Yu., Nigay (Ivanova) N.A. // Renewable Energy. 2022. V. 185. P. 1392.
  5. Kuznetsov G.V., Syrodoy S.V., Gutareva N.Yu., Nigay N.A. // J. Energy Inst. 2021. V. 96. P. 280.
  6. Syrodoy S.V., Kostoreva J.A., Kostoreva A.A., Asadullina L.I. // Ibid. 2020. V. 93. № 2. P. 443.
  7. Lee D., Lee Ji-H., Kim G.-M., Jeong J.-S., Kim S.-M. et al. // Renewable Energy. 2024. V. 226. Article 120198.
  8. Cheng W., Chen J., Yang W., Jiang H., Zhu Y. et al. // Energy. 2024. V. 313. Article 133769.
  9. Li J., Paul M.C., Czajkav K.M. // Energy Fuels. 2016. V. 30. № 7. P. 5870.
  10. Fatehi H., Weng W., Costac M., Li Z., Rabaçal M. et al. // Combust. and Flame. 2019. V. 206. P. 400.
  11. Wang X., Luo Zh., Wang Y., Zhu P., Wang Sh. et al. // J. Energy Inst. 2024. V. 115. Article 101707.
  12. Szufa S., Piersa S., Junga R., Błaszczuk A., Modliński N. et al. // Energy. 2023. V. 263, Part E. Article 125918.
  13. Li L., Memon M. Z., Xie Y., Gao S., Guo Y. et al. // Circular Economy (China). 2023. V. 2. Article 100063.
  14. Goshayeshi B., Sutherland J.C. // Combust. and Flame. 2014. V. 161. № 7. P. 1900.
  15. Frank-Kamenetsky D.A. // Adv. Chem. 1938. V. 7. P. 1278.
  16. Frank-Kamenetsky D.A. // J. Tech. Phys. 1939. V. 9. P. 1457.
  17. Frank-Kamenetsky D.A. // DAN USSR. 1941. V. 30. P. 729.
  18. Spalding D.B. // Proc. 4th Sympos (Intern.) on Combust. Pittsburgh: The Combust. Inst., 1953. № 1. P. 847.
  19. Shi X., Wu H., Jin P., Zhang Y., Zhang Y. et al. // Energy. 2023. V. 281. Article 128192.
  20. Zhang T., Zhou Y., Hu Zh. // Fuel Process Technol. 2023. V. 247. Article 107749.
  21. Reddy M.P., Singh A.S., Reddy V.M., Elwardany A., Reddy H. // Alexandria Eng. J. 2022. V. 61. № 8. P. 6169. https:doi.org/10.1016/j.aej.2021.11.047
  22. Yang W., Zhang Y., Liu B., Xu K., Zhang H. // Fuel. 2022. V. 314. Article 122772.
  23. Zhang T., Hu Zh., Zhou Y. // Combust. Flame. 2022. V. 241. Article 112092.
  24. Mularski J., Lue L., Li J. // Fuel. 2023. V. 348. Article 128520.
  25. Kuznetsov G.V., Syrodoy S.V., Kostoreva Zh.A., Nigay N.A., Purin M.V. et al. // Combust. and Flame. 2024. V. 262. Article 113353.
  26. Frank-Kamenetsky D.A. Diffusion and heat transfer in chemical kinetics. Moscow: Nauka, 1967 [in Russian].
  27. Dogonchi A.S., Bondareva N.S., Sheremet M.A., El-Sapa Sh., Chamkha Ali J. et al. // J. Energy Storage. 2023. V. 72. № 7. Article 108745.
  28. Bondareva N.S., Sheremet M.A. // Intern. J. Thermofluids. 2023. V. 19. Article 100374.
  29. Gol’din V. Y., Chetverushkin B.N. // Zh. Vychisl. Mat. Mat. Fiz. 1972. V. 12. № 4. P. 990.
  30. Chen Y., Aanjaneya K., Atreya A. // Fire Saf. J. 2017. V. 91. P. 820.
  31. Galgano A., Blasi C. Di. // Combust. and Flame. 2004. V. 139. № 1–2. P. 16.
  32. Paea S. Coal pyrolysis distribution. Wellington, New Zealand: Victoria University of Wellington, 2008.
  33. Bondarev A.E. Preprint № 073. Moscow: M.V. KelIdysh Institute of Applied Mathematics, 2008.
  34. Kuznetsov G.V., Syrodoy S.V., Malyshev D.Yu., Gutareva N.Yu, Nigay N.A. // Appl. Therm. Eng. 2020. V. 170. Article 115034.
  35. Vukalovich M.P., Rivkin S.L., Alexandrov A.A. Tables of Thermophysical Properties of Water and Steam. Moscow: Standard,1969.
  36. Agroskin A.A., Gleybman V.B. Thermophysics of Solid Fuels. Moscow: Nedra, 1980.
  37. Gryaznov N.S. Pyrolysis of Coals in the Coking Process. Moscow: Metallurgiya, 1983.
  38. Agroskin A.A. Physical Properties of Coal. Moscow: Metallurgizdat, 1961.
  39. Zeldovich Ya.B. Selected works. Chemical physics and hydrodynamics. Moscow: Nauka, 1984.
  40. Semenov N.N. // Uspekhi Fizicheskikh Nauk. 1940. V. 24. № 4. P. 433. [In Russian].
  41. Vilyunov V.N. Theory of ignition of condensed substances. Novosibirsk: Nauka (Siberian Branch), 1984.
  42. Basevich V.Ya. // Russ. Chem. Rev. 1987. V. 56. № 5. P. 705.
  43. Samarskii A.A. // USSR Comput. Math. Math. Phys. 1963. V. 3. № 5. P. 572.
  44. Samarsky A.A., Gulin A. V. Numerical Methods. Moscow: Nauka, 1989.
  45. Samarsky A.A. Introduction to the Theory of Difference Schemes. Moscow: Nauka, 1971.
  46. Kuznetsov G.V., Syrodoy S.V., Purin M.V., Karelin V.A., Nigay N.A. et al. // Energy. 2024. V. 288. Article 129579.
  47. Physical Encyclopedia / Ed. Prokhorov A.M. Moscow: The Great Russian Encyclopedia, 1992. V. 3.
  48. Yee K. // IEEE Trans. Antennas Propag. 1966. V. 14. № 3. P. 302.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The solution region of the ignition problem for radiative-convective heating.

Baixar (720KB)
3. Fig. 2. Pyrolysis scheme [32].

Baixar (206KB)
4. Fig. 3. The solution regions of the problem: Ω1 is the region corresponding to the fuel pellet; Ω2 is the region corresponding to the external gas environment.

Baixar (374KB)
5. Fig. 4. The dependence of the ignition delay time of a wood-coal pellet for radiative-convective heating: 1 — data from experimental studies [46]; 2 — results of mathematical modeling.

Baixar (248KB)
6. Fig. 5. Temperature fields and streamlines in a small neighborhood of a fuel pellet at the moment of ignition for different temperatures of the external environment: a — 873; b — 973; c — 1073 K, where A is a special point of the vector field of the “center” type.

Baixar (2MB)
7. Fig. 6. Oxygen concentration (O2), pressure (P) and temperature (T) distributions in the pore structure of the fuel at the moment of ignition: Z is the dimensionless coordinate of the cross section (Z = z/hz, where z is the dimensional coordinate (in m), hz is the height of the pellet); R is the dimensionless coordinate (R = r/r0, where r is the coordinate in the radial direction, r0 is the radius of the fuel pellet).

Baixar (1MB)
8. Fig. 7. The solution region of the ignition problem for combined radiation-convective and microwave heating.

Baixar (1MB)
9. Fig. 8. Dependence of the ignition delay time of a wood-coal pellet on the electric field strength.

Baixar (16KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025