МЕХАНИЗМ МЕЖЗОННОЙ ОЖЕ-РЕКОМБИНАЦИИ В InGaN/GaN КВАНТОВЫХ ЯМАХ В ПРИСУТСТВИИ ВСТРОЕННОГО ПЬЕЗОЭЛЕКТРИЧЕСКОГО ПОЛЯ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Анализируется влияние встроенного пьезоэлектрического поля на механизм оже-рекомбинации в квантовых ямах InGaN/GaN. Приводятся аналитические выражения для коэффициентов беспорогового и квазипорогового каналов оже-рекомбинации. Показано, что с ростом пьезоэлектрического поля Ef коэффициенты оже-рекомбинации убывают, что связано с общим уменьшением интегралов перекрытия между состояниями валентной зоны и зоны проводимости.

Об авторах

Д. М Самосват

Сектор теоретических основ микроэлектроники, Физико-технический институт им. А. Ф. Иоффе Российской академии наук

Email: samosvat@yandex.ru
Санкт-Петербург, Россия

В. В Гришунов

Сектор теоретических основ микроэлектроники, Физико-технический институт им. А. Ф. Иоффе Российской академии наук

Email: vlad.grishunowf@gmail.com
Санкт-Петербург, Россия

Г. Г Зегря

Сектор теоретических основ микроэлектроники, Физико-технический институт им. А. Ф. Иоффе Российской академии наук

Email: zegrya@theory.ioffe.ru
Санкт-Петербург, Россия

Список литературы

  1. J. Bhardwaj, J. M. Cesaratto, I. H. Wildeson et al., Phys. Status Solidi A 214, 1600826 (1999).
  2. P. M. Pattison, M. Hansen, and J. Y. Tsao, C. R. Phys. 19, 134 (2018).
  3. Y. Zhao, H. Fu, G. T. Wang, and S. Nakamura, Adv. Opt. Photon. 10, 246 (2018).
  4. G. Verzellesi, D. Saguatti, M. Meneghini et al., J. Appl. Phys. 114, 071101 (2013).
  5. L. Wang, J. Jin, Ch. Mi et al., Materials 10, 1233 (2017), doi: 10.3390/mal0111233.
  6. S. Karpov, Opt. Quant. Electron. 47, 1293 (2015).
  7. F. Bertazzi, M. Goano, and E. Bellotti, Appl. Phys. Lett. 97, 231118 (2010).
  8. E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, Appl. Phys. Lett. 98, 161107 (2011).
  9. A. V. Zinovchuk and A. M. Gryschuk, Opt. Quant. Electron. 50, 455 (2018).
  10. M. Brendel, A. Kruse, H. Jonen et al., Appl. Phys. Lett. 99, 031106 (2011).
  11. H. Y. Ryu, K. S. Jeon, M. G. Kang et al., Sci. Rep. 7, 44814 (2017).
  12. C.-K. Tan, W. Sun, J. J. Wiener, and N. Tansu, AIP Adv. 7, 035212 (2017).
  13. I. Reklaitis, L. Krencius, T. Malinauskas et al., Semicond. Sci. Technol. 34, 015007 (2018).
  14. H.-Y. Ryu, H.-S. Kim, and J.-I. Shim, Appl. Phys. Lett. 95, 081114 (2009).
  15. W. G. Scheibenzuber, U. T. Schwarz, L. Sulmoni et al., J. Appl. Phys. 109, 093106 (2011).
  16. M. Zhang, P. Bhattacharya, J. Singh, and J. Hinckley, Appl. Phys. Lett. 95, 201108 (2009).
  17. G. G. Zegrya and V. A. Kharchenko, Sov. Phys. JETP 74, 173 (1992).
  18. A. S. Polkovnikov and G. G. Zegrya, Phys. Rev. B 58, 4039 (1998).
  19. J. Iveland, L. Martinelli, J. Peretti et al., Phys. Rev. Lett. 110, 177406 (2013).
  20. F. Bertazzi, M. Goano, Xiangyu Zhou et al., Appl. Phys. Lett. 106, 061112 (2015).
  21. N. Anchal, A. Pansari, and B. K. Sahoo, AIP Conf. Proc. 2220, 050008 (2020).
  22. X. Li, E. DeJong, R. Armitage et al., Appl. Phys. Lett. 123, 112109 (2023).
  23. D. Jenkins, in Band Structure of InN, GalnN and AlInN, ed. by E. D. Series, Publisher, Address (1994), Vol. 11.
  24. N. E. Christensen and I. Gorczyca, Phys. Rev. B 50, 4397 (1994).
  25. R. Vaxenburg, A. Rodina, E. Lifshitz, and A. L. Efros, Appl. Phys. Lett. 103, 221111 (2013).
  26. D. Samosvat, A. Karpova, and G. Zegrya, Appl. Phys. A 131, 99 (2025).
  27. E. O. Kane, J. Phys. Chem. Sol. 1, 249 (1957).
  28. I.-J. Chen, S. Thorberg, and Y. Chen, in Calculation on the Band Structure of GaAs Using k · p-theory FFF 042, Publisher, Address (2014).
  29. A. Polkovnikov and R. A. Suris, Phys. Rev. B 62, 16566 (2000).
  30. H. Bateman and B. M. Project, Higher Transcendental Functions, Vol. I-III, McGraw-Hill Book Comp., Address (2023).
  31. G. G. Zegrya and A. D. Andreev, Appl. Phys. Lett. 67, 2681 (1995).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025