FIELD GENERALIZATION OF ELLIPTIC CALOGERO – MOSER SYSTEM IN THE FORM OF HIGHER RANK LANDAU – LIFSHITZ MODEL

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

We prove gauge equivalence between integrable field generalization of the elliptic Calogero–Moser model and the higher rank XYZ Landau–Lifshitz model of vector type on 1+1 dimensional space-time. Explicit formulae for the change of variables are derived, thus providing the Poisson map between these models.

Sobre autores

K. Atalikov

NRC «Kurchatov Institute»; Steklov Mathematical Institute of Russian Academy of Sciences

Autor responsável pela correspondência
Email: kantemir.atalikov@yandex.ru
Moscow, Russia; Moscow, Russia

A. Zotov

Steklov Mathematical Institute of Russian Academy of Sciences

Email: zotov@mi-ras.ru
Moscow, Russia

Bibliografia

  1. L. D. Landau and E. M. Lifshitz, Phys. Zs. Sowjet. 8, 153 (1935).
  2. E. K. Sklyanin, Preprint LOMI E-3-79, Leningrad (1979).
  3. E. K. Sklyanin, Questions of Quantum Field Theory and Statistical Physics, Part 6, Zap. Nauchn. Sem. LOMI 150, 154 (1986).
  4. L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, Berlin (1987).
  5. V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).
  6. V. E. Zakharov and A. B. Shabat, Funct. Anal. Appl. 8, 226 (1974).
  7. V. E. Zakharov and A. B. Shabat, Funct. Anal. Appl. 13, 166 (1979).
  8. I. Krichever, Commun. Math. Phys. 229, 229 (2002); arXiv:hep-th/0108110.
  9. A. Levin, M. Olshanetsky, and A. Zotov, Commun. Math. Phys. 236, 93 (2003); arXiv:nlin/0110045.
  10. A. V. Zotov and A. V. Smirnov, Theor. Math. Phys. 177, 1281 (2013).
  11. K. Atalikov and A. Zotov, JETP Lett. 117, 630 (2023); arXiv:2303.08020 [hep-th].
  12. R. J. Baxter, Ann. Phys. 76, 25 (1973).
  13. F. Calogero, Lett. Nuovo Cim. 13, 411 (1975).
  14. J. Moser, Adv. Math. 16, 1 (1975).
  15. M. A. Olshanetsky and A. M. Perelomov, Phys. Rep. 71, 313 (1981).
  16. I.M. Krichever, Funct. Anal. Appl. 14, 282 (1980).
  17. A. A. Akhmetshin, I. M. Krichever, and Y. S. Volvovski, Funct. Anal. Appl. 36, 253 (2002); arXiv:hep-th/0203192.
  18. A. Zotov, J. Phys. A 57, 315201 (2024); arXiv:2404.01898 [hep-th].
  19. K. Atalikov and A. Zotov, JETP Lett. 115, 757 (2022); arXiv:2204.12576 [math-ph].
  20. M. Jimbo, T. Miwa, and M. Okado, Nucl. Phys. B 300, 74 (1988).
  21. K. Atalikov and A. Zotov, Theoret. and Math. Phys. 219, 1004 (2024); arXiv:2403.00428 [hep-th].
  22. K. Atalikov and A. Zotov, J. Geom. Phys. 164, 104161 (2021); arXiv:2010.14297 [hep-th].
  23. A. G. Reiman and M. A. Semenov-Tian-Shansky, Zap. Nauchn. Sem. LOMI 150, 104 (1986).
  24. A. V. Zotov, SIGMA 7, 067 (2011); arXiv:1012.1072 [math-ph].
  25. A. Zabrodin and A. Zotov, JHEP 07, (2022) 023; arXiv: 2107.01697 [math-ph].
  26. A. Belavin and V. Drinfeld, Funct. Anal. Appl. 16, (1982) 159.
  27. A. Levin, M. Olshanetsky, and A. Zotov, JHEP 07, (2014) 012, arXiv:1405.7523 [hep-th].
  28. A. Levin, M. Olshanetsky, and A. Zotov, J. Phys. A: Math. Theor. 49, (2016) 395202; arXiv:1603.06101 [math-ph].
  29. M. Vasilyev and A. Zotov, Rev. Math. Phys. 31, (2019) 1930002; arXiv:1804.02777 [math-ph]
  30. A. Zotov, Funct. Anal. Its. Appl. 59, (2025) 142; arXiv:2407.13854 [nlin.SI].
  31. D. Domanevsky, A. Levin, M. Olshanetsky, and A. Zotov, Izvestiya: Mathematics (2026) to appear; arXiv:2501.08777 [math-ph].
  32. A. Levin, M. Olshanetsky, and A. Zotov, Eur. Phys. J. C 82, 635 (2022); arXiv:2202.10106 [hep-th].

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025